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Abstract

A new approach has been developed for making near-real-time measurement of elemental 

composition of aerosols using plasma spectroscopy. The method allows preconcentration of 

miniscule particle mass (pg to ng) directly from the sampled aerosol stream through electrostatic 

deposition of charged particles (30–900 nm) onto a flat-tip microneedle electrode. The collected 

material is subsequently ablated from the electrode and monitored by laser-induced breakdown 

spectroscopy. Atomic emission spectra were collected using a broadband spectrometer with a 

wavelength range of 200–980 nm. A single-sensor delay time of 1.3 μs was used in the 

spectrometer for all elements to allow simultaneous measurement of multiple elements. The 

system was calibrated for various elements including Cd, Cr, Cu, Mn, Na, and Ti. The absolute 

mass detection limits for these elements were experimentally determined and found to be in the 

range of 0.018–5 ng. The electrostatic collection technique has many advantages over other 

substrate-based methods involving aerosol collection on a filter or its focused deposition using an 

aerodynamic lens. Because the particle mass is collected over a very small area that is smaller than 

the spatial extent of the laser-induced plasma, the entire mass is available for analysis. This 

considerably improves reliability of the calibration and enhances measurement accuracy and 

precision. Further, the aerosol collection technique involves very low pressure drop, thereby 

allowing higher sample flow rates with much smaller pumps—a desirable feature for portable 

instrumentation. Higher flow rates also make it feasible to measure trace element concentrations at 

part per trillion levels. Detection limits in the range of 18–670 ng m−3 can be achieved for most of 

the elements studied at a flow rate of 1.5 L min−1 with sampling times of 5 min.

1. Introduction

Exposure to toxic metals and their compounds can cause adverse health effects such as 

increased risk of cancer and respiratory diseases (Pope et al. 2002; Agency for Toxic 

Substance and Disease Registry (ATSDR) 2011). Measurement of chemical composition of 

airborne particulate matter is of great significance to the protection of human health and the 

environment. Most existing methods for measurement of particulate metal contaminants 

involve filter-based collection over several hours, followed by laboratory analysis of 
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collected particulate matter using suitable analytical methods. These methods are adequate 

for routine monitoring applications targeting specific regulations. However, many research 

applications require measurements below established exposure limits, or demand short 

measurement times. In addition, even with respect to routine compliance monitoring, the 

filter-based methods suffer from many known drawbacks. The measurements are time 

averaged over several hours and cannot capture high-intensity, short-time exposures that are 

typical in many industrial environments. Filter-based methods are also very time- and 

resource-intensive, with typical analysis turnaround times of several days to weeks. 

Semicontinuous or near-real-time instruments that can provide in situ information on the 

chemical composition of aerosols can be valuable tools for monitoring indoor, industrial, 

and ambient atmospheres. Particularly for workplace or indoor aerosol measurement 

applications, compact size and portability of the instrument are key to obtaining reliable 

exposure measurements.

Compared to mass spectrometric methods (Wexler and Murray 2011), plasma-based optical 

spectroscopy techniques provide a more attractive alternative for measurement of the 

elemental composition of aerosols. Though single-particle mass spectrometers typically 

provide the most detailed, real-time information about the size and composition (atomic/

molecular) of aerosol particles (Canagaratna et al. 2007; Zelenyuk and Imre 2009; Hao et al. 

2009; Wexler and Murray 2011), they are unsuitable for routine exposure measurement 

applications as they are large, bulky, and expensive. Techniques like laser-induced 

breakdown spectroscopy (LIBS) are being increasingly applied to field applications due to 

their relative simplicity and robustness. Rapid progress in laser and optical spectrometer 

technology has now made it possible to build compact, portable instruments, making LIBS 

an attractive option for routine field applications where elemental composition is desired 

(Myers et al. 2003; Gornushkin et al. 2004; Salle et al. 2005; Goujon et al. 2008; Cunat et al. 

2009; Leone et al. 2007).

LIBS involves creating a plasma in air, liquid, or on a solid substrate using a high-energy 

pulsed laser, resulting in atomic emission from the analyte(s), and subsequent detection of 

emission by an optical spectrometer. Temperatures in the resulting plasma can range from 

10,000 to 20,000 K, which vaporizes and atomizes the sample to produce atoms and ions. 

Each element has signature emission lines, which are collected by appropriate optics and 

dispersed, typically by using an optical spectrometer, and then, measured with an 

appropriate detector, such as charge-coupled device (CCD), intensified CCD (ICCD), or a 

photomultiplier tube (PMT). The wavelength of the atomic emission gives information 

about the element's identity, while the signal intensity gives its abundance. The LIBS signals 

are temporal in nature and last for about 10–100 μs after the plasma is formed. The 

technique has been used for liquids, gases, and solids, including limited application to 

aerosols (Hahn et al. 1997; Buckley et al. 2000; Fisher et al. 2001), ambient pollution 

monitoring (Casini et al. 1991; Gaudiuso et al. 2010), industrial process monitoring (Noll et 

al. 2001, 2008; Fink et al. 2002; Balzer et al. 2006), and standoff or remote detection (Ball et 

al. 2005; Alvarez-Trujillo et al. 2008; Gottfried et al. 2008).

LIBS has been applied to aerosol analysis with a limited degree of success, particularly with 

respect to applications where measurements are needed with acceptable precision and 
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accuracy. There are challenges in successfully applying LIBS to aerosols. Because LIBS is a 

point-based sampling technique, the extremely small sampling volume (typically less than 1 

mm3) results in poor sampling statistics (Hahn et al. 1997), particularly for atmospheric or 

workplace aerosols. Other key challenges include accuracy, precision, and reliable 

calibration. Matrix effects, i.e., artifacts introduced by the presence of elements other than 

the analyte, can also degrade the accuracy of LIBS measurements. Further, the repeatability 

or precision of aerosol measurement typically has been poor (Cheng 2003; Lithgow et al. 

2004; Amodeo et al. 2009). Reliable calibration of aerosol LIBS systems is another key 

factor that has not been sufficiently addressed by the previous studies. Calibration for 

measurement of analytes in solution can be reliably performed using certified standard 

solutions that are stable and have known analyte concentrations, whereas no such standards 

exist for calibration of aerosol systems. This further necessitates accurate and detailed 

characterization of aerosol particle properties and wall losses to allow reliable estimation of 

analyte mass delivered to the plasma volume during the calibration process, which can often 

be challenging.

Most LIBS studies of aerosol systems fall into two categories: (i) free-stream analysis (FSA) 

where particles are sampled in situ from a free flowing stream and (ii) accumulation of 

particles from an aerosol stream onto a substrate (such as a filter) followed by LIBS 

analysis. In the first approach, either particles are randomly sampled at a fixed location in an 

aerosol stream (Hahn et al. 1997; Buckley et al. 2000; Carranza et al. 2001; Fisher et al. 

2001) or they are aligned to form a particle beam, either using a capillary (Cheng 2003; Park 

et al. 2009) or an aerodynamic lens (Park et al. 2009), which then passes through the laser-

induced plasma.

Mass detection limits as low as 0.5 fg (for calcium) have been reported (Carranza et al. 

2001; FSA) using high pulse energy (375 mJ) and highly sensitive ICCDs. However, the 

detection limit in terms of air concentration still tends to be very poor for FSA techniques 

due to poor sampling statistics. Thus, FSA may not be suitable for analysis of ambient and 

workplace aerosols at low concentrations. The second approach involving substrate-based 

collection (SBC) and analysis, though it does not provide as instantaneous information as 

FSA, does allow one to achieve lower detection limits by increasing the sample flow rates 

and sampling times. These techniques typically have utilized SBC or collection on a solid 

substrate using focused aerodynamic impaction (single-particle beam [SPB] analysis) 

(Cremers and Radziemski 1995; Panne et al. 2001, 2002; Kuhlen et al. 2008; Park et al. 

2009). Filter-based collection significantly improves sampling statistics compared to the 

FSA technique, but likely not enough to be practically useful because only a microscopic 

point on the filter surface is analyzed each time. For instance, for a 35 mm filter, the amount 

of sample analyzed in each laser pulse is less than 0.05% of the total collected mass on the 

filter. To improve sampling statistics, high sampling flow rates, long sample collection 

times, and/or sampling multiple points on the filter are generally needed. High flow rates in 

a filter-based system are often not desirable in a compact instrument as it requires larger 

pumps. Furthermore, the large heterogeneity of deposited particles across the filter surface 

and along its depth can add to substantial degradation of accuracy and precision of filter-

based measurements. SBC using an aerodynamic lens (Park et al. 2009) addresses many of 
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these drawbacks; however, this approach requires multiple, large vacuum pumps and there is 

a limitation on the particle size range that can be transmitted through the aerodynamic lens, 

making it unsuitable for compact and portable instrumentation.

In this paper, we present a new approach for sampling and analyzing aerosols using LIBS 

that addresses many of the drawbacks discussed above. The approach involves first charging 

and subsequently collecting the charged particles on the flat tip of a microneedle, followed 

by LIBS analysis of the sample collected on the tip. This allows focused collection of 

particles on the tip of the needle electrode. The diameter of the collection needle electrode is 

kept smaller than the spatial extent of the laser-induced plasma, which ensures near-

complete ablation of the sample by a single laser pulse. Focused aerosol collection, followed 

by complete ablation of the deposited material, allows reliable calibration of the system and 

considerably improves overall measurement accuracy and precision. We show that excellent 

limits of detection can be achieved using modest sampling flow rates and collection times to 

allow time resolutions of a few seconds to a few minutes for most elements. The 

experimental setup, calibration process, determination of limits of detection for various 

elements, and comparison with previously published studies are presented.

2. Experimental Methods

The complete experimental setup used in this study consists of three subsystems: (i) aerosol 

generation, (ii) aerosol collection, and (iii) the LIBS system. A schematic diagram of the 

complete setup is shown in Figure 1.

2.1. Aerosol Generation

For calibration experiments, test aerosols were generated using a pneumatic atomizer (model 

3076, TSI Inc., Shoreview, MN, USA) to atomize elemental standard solutions. Except for 

Na, elemental standard solutions with varying elemental concentrations were obtained from 

Spex Certiprep (Metuchen, NJ, USA) and Inorganic Ventures (Christiansburg, VA, USA). 

To obtain an Na standard solution, 99.9% pure NaCl salt was dissolved in ultrafiltered DI 

water (Fisher Scientific, Pittsburgh, PA, USA). The aerosolized elemental standards were 

subsequently passed through two sequential diffusion dryers for desolvation. The resulting 

dry aerosol was passed through a differential mobility analyzer (DMA; model 3080, TSI 

Inc., Shoreview, MN, USA) to obtain a near-monodisperse test aerosol (with geometric 

standard deviation less than about 1.1) in the size range 30–500 nm. The aerosol from the 

DMA was then passed through a neutralizer (a Po210 source) and an electrostatic precipitator 

to remove all electrically charged particles. The resulting uncharged and near-monodisperse 

test aerosol was sent to the aerosol collection system for analysis using LIBS. Typical 

number concentration of the test aerosol in the study was in the range of 300–7000 

particles/cm3. Table 1 shows the list of elemental standards used for various elements 

including Cd, Cu, Cr, Mn, and Ti. These stock standards were diluted using ultrafiltered DI 

water to obtain the desired solution concentration of the analyte, ranging from 100 to 1000 

μgmL−1. A constant flow rate of 1.5 L min−1 was maintained through the aerosol collection 

system and was driven by the native pump in the condensation particle counter (CPC; model 

3022A, TSI Inc., Shoreview, MN, USA).
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2.2. Aerosol Collection System

Figure 2 shows the schematic diagram of the aerosol collection system. An electrostatic 

aerosol collection system was designed to collect particles directly from the gas phase onto a 

flat tip of a 500 μm diameter straight tungsten needle (Metal Cutting, Cedar Grove, NJ, 

USA). Tungsten was chosen as the substrate material mainly because of its superior 

electrical and thermal properties. Additionally, the spectral lines from tungsten did not 

interfere with the measurement of elements of interest in this study. The tungsten needle 

used in this study had high chemical purity (99.996%), ensuring negligible interference from 

trace impurities. Particles were charged using the corona generated by another sharp tip 

needle made of tungsten (200 μm diameter with 5 μm diameter tip), called the corona 

needle, as shown in Figures 2 and 3. A high positive potential (∼5 kV) was applied to the 

corona needle using a DC power supply (Bertran S-230, Spellman Corp., Hauppauge, NY, 

USA) and the collection needle was grounded. A constant corona current of 1 μA was 

maintained between the two needle electrodes, which resulted in a very stable corona over 

an extended period of operation. Both needles were located coaxially with a distance of 7 

mm between the tip of corona needle and the flat surface of the collection needle (Figure 2). 

The diameter of the collection needle was chosen to be 500 μm to approximately match the 

spatial extent of the laser focal spot and laser-induced plasma on the tip, as well as to 

provide large-enough surface for the aerosol deposition. The diameter of the laser spot was 

measured to be 560 ± 9 μm by ablating a film of ink on a glass slide and measuring the 

diameter of ablated spot using an optical microscope.

Aerosol particles entered the collection system through a concentric tube around the corona 

needle. They acquired electrical charge through attachment of unipolar ions created by the 

corona needle and subsequently migrated to the surface of the collection needle under the 

influence of the electric field created by the two needles. The aerosol sample flow, 1.5 L 

min−1 in this study, exited the collection system through another concentric tube around the 

collection needle as shown in Figure 2. Both the needles were electrically isolated along 

their lengths using glass tubes to avoid contact with any metallic fittings and fixtures. This 

insulation was also necessary to eliminate any undesirable electrical field that may be 

generated in the aerosol flow path. Since it was desirable to collect particles only on the flat 

surface of the collection needle, the needle was covered with a high dielectric strength 

sleeve [polyether ether ketone (PEEK), 1.58 mm outer diameter, 0.40 mm wall thickness; 

McMaster-Carr, Princeton, NJ, USA] to avoid deposition on the side walls of the collection 

needle as shown in Figure 2. The system was optimized for various parameters including 

voltage across electrodes, corona current, distance between the electrodes, and the sample 

flow rates. As will be shown later, this arrangement provided very high capture efficiency of 

aerosol particles. The capture efficiency of the aerosol collection system was characterized 

in the size range of 30–900 nm using aerosols from a pneumatic atomizer or condensation 

monodisperse aerosol generator (CMAG; model 3475, TSI Inc., Shoreview, MN, USA) and 

subsequently size-classified using a DMA. A CPC was used downstream of the aerosol 

collection unit to measure the concentration of particles exiting the unit. The concentrations 

of DMA-classified particles with and without the voltage across the corona needle were 

measured and used to calculate capture efficiency. Measuring the concentration downstream 

of the aerosol collection unit ensured that all particle losses, except those occurring in the 

Diwakar et al. Page 5

Aerosol Sci Technol. Author manuscript; available in PMC 2015 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



presence of electric field, were accounted for in the capture efficiency measurement. The 

mass of particles deposited on the collection needle was determined by taking into account 

number concentration, collection time, particle mobility diameter, the particle's chemical 

form and corresponding mass density, and aerosol flow rate. Particles were assumed to be 

spherical for particle mass estimation. The implications of these assumptions on mass 

estimation will be discussed later.

2.3. LIBS Setup and Operation

The aerosol collection system described above was housed in a six-way chamber made of 

Delrin and designed to allow aerosol inlet and outlet flow. The chamber was fitted with a 

fused silica quartz window (PW1-2025 UV; CVI MellesGriot, Rochester, NY, USA) that 

provided optical access for laser pulse delivery and collection of the LIBS signal (i.e., 

atomic emission signal resulting from the laser ablation of deposited particulate matter). A 

summary of the experimental parameters for the LIBS system is given in Table 2.

The LIBS instrument consists of a Q-switched Nd: YAG pulsed laser operating at 532 nm [5 

ns full width at half maximum (fwhm), 1 Hz, 20 mJ], which was focused onto the tip of the 

collection needle (located in the center of the LIBS chamber) to create the plasma using a 

condensing lens (50 mm diameter) with a focal length of 100 mm. The axis of the laser 

beam was oriented at 90° to the axis of the collection needle. The resulting plasma on the tip 

of the needle ablated the particulate sample collected on the tip, followed by emission from 

atomic species in the plasma. The LIBS signal was collected using backscattered geometry 

using a pierced mirror and a condensing lens with 75 mm focal length. The signal was then 

focused and transmitted through a fiberoptic cable connected to a broadband spectrometer 

(200–980 nm, 0.1 nm resolution, LIBS2500 Plus, Ocean Optics Inc., Dunedin, FL, USA). 

The Q-switch of the laser was triggered by the spectrometer software (OOILIBS, version 

4.5.07, Ocean Optics, Dunedin, FL, USA); the timing of the laser pulse and signal collection 

was controlled by the spectrometer. The compact broadband spectrometer allowed 

simultaneous analysis of multiple elements in the wavelength range 200–980 nm.

The LIBS signal is temporal in nature and lasts for approximately 10–100 μs after the 

inception of the plasma. Initially, continuum emission dominates, which is mainly the result 

of Bremsstrahlung (free–free) and recombination radiation (free-bound) from the plasma 

when the free electrons and ions recombine as the plasma cools down (Hutchinson 2002). 

After the initial bright continuum emission decays, atomic emission by ions, followed by 

neutral species, and finally, emission by molecules takes place. Early continuum emission 

can significantly degrade the signal-to-noise (S/N) ratio, especially if the analyte is available 

in trace amounts in the sample, as is the case in the current study. Therefore, proper gating 

and integration of the signal is essential to selectively choose a window of time where the 

continuum emissions are low, but the signal from the analyte is still high. In order to detect 

the LIBS signal in this study, different delay times were tested and a delay time of 1.3 μs 

was chosen, at which the S/N ratio for most of the elements examined in the present study 

was found to be adequate. Although the spectrometer can be optimized for each element to 

achieve a maximum S/N ratio, only one delay time was used to allow simultaneous 

multielemental analysis. A default signal integration time of 1 ms was used for all elements.
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2.4. Calculation of Peak-to-Base Ratio of LIBS Signal

The raw signal intensity was subsequently converted to a peak-to-base ratio (P/B), defined 

as the integrated absolute atomic emission line intensity normalized to the plasma 

continuum intensity close to the atomic line spectral region (Hahn 1998; Hohreiter and Hahn 

2005; Park et al. 2009). Defined this way, the P/B ratio represents the S/N ratio for a 

particular element and accounts for any fluctuations arising from the shift in continuum 

emission intensity. The P/B ratio was calculated from the collected raw spectra of Cu, Cd, 

Na, and Ti. For Cr and Mn, a Gaussian curve was fitted to the raw spectral data to resolve 

their peaks and allow subsequent calculation of P/B ratio. Gaussian fitting for Cr and Mn 

was necessary to resolve the analyte peak of interest from overlapping peaks for the element. 

A single laser shot (pulse) was sufficient to completely ablate the deposited particulate 

material for most mass loadings. For higher mass loadings (approximately > 10 ng for Na 

and >50 ng for Cd), multiple laser shots were fired until no analyte signal was observed. All 

the shots for which P/B > 1 were summed to obtain the final P/B ratio for that target 

element.

For blank measurements (i.e., background measurement from the needle without the 

presence of any analyte), pure ultra-filtered deionized (DI) water was atomized and the 

LIBS signal was obtained in the spectral region for each analyte under identical 

experimental conditions. Blank measurements were taken before and after the introduction 

of metal aerosols and subsequently processed to obtain P/B ratio of the blank. The mean 

blank reading and its standard deviation were obtained by averaging over nine replicate 

blank measurements at the spectral region of each target analyte.

2.5. Calibration Experiments

Six different elements were studied in this work: Cd, Cr, Cu, Mn, Na, and Ti. A standard 

solution for each element (Table 1) was prepared. For each element, atomic emission lines 

were chosen that corresponded to the maximum signal intensity for that element, with the 

least interference from tungsten lines (i.e., emission from the substrate). The selected 

wavelength and energy transition levels for each element are summarized in Table 3.

Aerosol particles were collected for a predetermined amount of time that ranged from a few 

seconds to a few minutes, depending on aerosol concentration, particle size, and the LIBS 

signal strength. Subsequently, the laser pulse was fired to generate plasma on the needle tip, 

followed by collection of emission spectra. The collected spectra were analyzed to obtain a 

P/B ratio as described previously. Blank spectra were collected before and after the 

calibration experiments for each element. A single laser pulse was sufficient to completely 

ablate the deposited aerosol for most of the mass loadings. Additionally, the needle tip was 

cleaned by firing multiple laser shots (3–5) after every measurement to ensure that the clean 

needle tip was available for the next set of measurements. Calibration experiments were 

performed by using 50 and 80 nm DMA-classified particles; the total mass deposited on the 

collection needle was changed by varying the collection time. By varying the aerosol 

collection time, a wide range of mass depositions, from 1 to 200 ng, was achieved to 

generate a calibration curve. Calibration for most elements was performed using 5–10 mass 
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loadings. The final calibration curve was obtained by averaging over five independent sets 

of measurements for each mass loading.

4. Results and Discussions

4.1. Particle Capture Efficiency of Collection Needle

It was desirable that all the particles entering the collection system be captured on the tip of 

the collection electrode with 100% capture efficiency, ensuring accurate measurement of the 

air concentration of the analyte. Particle mass collected on the collection needle is given by

[1]

where η(dp) is the particle size-dependent capture efficiency of particles, ρp is the particle 

material density, Qf is the aerosol volumetric flow rate, tc is the time over which particles are 

collected on the tip, and n(dp) is the number-weighted size distribution of the aerosol 

represented by the following lognormal distribution:

[2]

where Nt is the total particle concentration and dpg is the count mean diameter. Capture 

efficiency η(dp) is governed by the particle size, electrical charge on the particle, flow rate, 

and intensity and distribution of the electric field between the electrodes. Specifically, the 

migration velocity of the particle (νe) due to the external electric field in the direction 

perpendicular to the needle axis should be larger than its velocity due to flow (νf) parallel to 

the needle axis such that it reaches the collection surface in time less than t = l/νf, where l is 

the distance between the two electrodes. Following these considerations, the distance 

between the needles and flow rates was optimized to achieve maximum collection 

efficiency.

The overall capture efficiency of the collection electrode was experimentally determined by 

measuring the particle number concentration downstream of the collection unit with ( ) 

and without ( ) the high voltage on the corona needle and is given by

[3]

By basing the capture efficiency on the outlet concentration, it was ensured that all the 

particle losses to regions outside the collection needle tip, in the absence of the electrical 

field, were accounted for in the capture efficiency term. However, this equation does not 

account for particle loss to regions outside the tip in the presence of electrical field. This 

may introduce an error in the estimated mass, the implications of which are discussed later 

in the section on “system calibration.” Also, it was confirmed that no particles were 
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generated by the corona itself. Experimental capture efficiencies were obtained over the 

entire size range of 30–900 nm using DMA-classified and CMAG-generated particles and 

are shown in Figure 4. The collection efficiency was close to 99% over a wide range from 

30 to 600 nm and then dropped slightly to 97% for larger particles. This implies that the 

error introduced in the analyte measurement by the nonideal capture efficiency will be 

between ∼ 1%–3% in the submicrometer size range.

Our one-step, charge-and-collect system in this study was designed and optimized for the 

submicrometer size range. The collection efficiency of larger particles, with negligible 

diffusion, is linearly proportional to the particle diameter; therefore, the electrostatic 

collection technique can be readily extended to particles larger than 1 μm. A more efficient 

scheme for collection of small as well as larger particles, e.g., PM2.5, would be to separate 

charging and collection into a two-stage process by first employing a unipolar charger for 

efficient electrical charging, followed by subsequent collection on the electrode tip in the 

presence of electric field in a second unit. In real-world measurement applications, decrease 

in collection efficiency due to accumulation of a thick particulate layer on the collection 

electrode can be a source of increased uncertainty in the measured air concentration of an 

analyte. The thickness of the particulate layer and its electrical resistivity play an important 

role in determining the degree of reduction in collection efficiency (White 1974; McDonald 

and Sparks 1980; Flagan and Seinfeld 1988; Young et al. 1988; Kanazawa et al. 1997; 

Zhuang et al. 2000; Huang and Chen 2003). Typically, for most materials, the thickness 

must be a few millimeters before an appreciable change in collection efficiency occurs. 

Huang and Chen (2003) have shown that for cement dust particles of 300 nm diameter, the 

collection efficiency drops by about 4% when the thickness of the particulate layer on the 

collection electrode reaches 5 mm. In our collection system, assuming a conservative 

scenario where the aerosol mass concentration is high at 1 mg/m3, the sample flow rate is 5 

lpm, and particle density is 2 g/cm3, it will take about 390 min to accumulate a particulate 

layer of 5 mm thickness over a 0.5-mm-diameter electrode. As discussed later, most 

applications will require much shorter collection times—on the order of a few seconds to 

minutes—where reduction in collection efficiency is not likely to be a concern.

4.2. Laser-Needle Orientation Effects

For all the elements and for most mass loadings used in the calibration experiments, one 

laser pulse was sufficient to achieve complete ablation of deposited material. Figure 5 shows 

the LIBS signal for Ti from the first and second laser shot, clearly indicating that the Ti 

signal from the second laser pulse was close to the background.

For very high mass loadings, an additional two to three laser pulses were required for 

complete ablation of analyte mass. We intentionally used a lower energy laser in this study, 

much lower than those used in most traditional LIBS studies of aerosols (Arnold and 

Cremers 1995; Cheng 2000; Park et al. 2009), so as to mimic performance of low-power 

miniature lasers used in field-portable LIBS instruments. In traditional LIBS studies on 

aerosols, the laser pulse energy is generally in the range of 100–300 mJ/pulse, whereas in 

the field-portable instruments it is typically in the range of 25–50 mJ/pulse (Panne et al. 

2001; Pierce et al. 2004; Goujon et al. 2008). Examination of the bare tip of the collection 
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needle using scanning electron microscopy before and after a laser pulse showed no visible 

cratering from the ablation, suggesting that the amount of substrate mass ablated in each 

event was very small. The same collection needle, which was subjected to many thousands 

of shots, was used in all our experiments reported in this study. We did not conduct detailed 

investigation of the needle lifetime in this study. However, in another ongoing study 

(Diwakar and Kulkarni 2011), where pulsed spark plasma is used, instead of the laser 

plasma, along with identical electrode setup, we did investigate the electrode durability. 

Pulsed spark plasma energy in the range of 150– 300 mJ/pulse, much higher than the laser 

energy of 20 mJ/pulse used in this study, was employed. Repeatability of spark plasma 

characteristics was tested for up to 120,000 sparks and was found to be excellent even after 

120,000 sparks. Laser energy used in this study (20 mJ/pulse) was much lower than that 

used in the spark system. These results suggest that the needle, when subject to the laser 

plasma should last several hundreds of thousands of pulses.

As mentioned earlier, the laser was oriented perpendicular to the longitudinal axis of the 

needle due to ease of implementation and to minimize the energy absorbed by the substrate 

during ablation as shown in Figure 6. However, this perpendicular orientation may lead to 

some mass deposited in the “shadow region” (i.e., the needle wall between its tip and the 

end of the dielectric sheath) not being ablated by the laser as shown in Figure 6. This 

unablated mass can introduce errors in calibration, if not accounted for.

We further probed the extent of this artifact by quantifying the amount of mass deposited in 

the shadow region. The first few laser pulses were fired in the “initial” orientation to obtain 

ablated analyte mass (mai). Subsequently, the collection needle was rotated about its 

longitudinal axis in three successive steps, each by 90°, and the spectra were recorded for 

each orientation to determine the total unablated mass in the shadow region (msh). Table 4 

shows the mass of Cd, Cu, and Mn measured using 50 nm particles for each of the three 

orientations of the needle, averaged over four replicates. As shown in the table, the amount 

of mass in the shadow region was approximately 12%–14% of the mass in the initial 

orientation (mai). Furthermore, this mass fraction was independent of the aerosol chemical 

composition.

To account for the shadow region mass fraction, Equation (1) was modified as

where fs is the fraction of the total deposited mass not ablated in a single fixed orientation of 

the collection electrode with respect to the laser. A constant value of 0.12 was used for fs 

based on the above measurements. The mass fraction in the shadow region is expected to be 

independent of particle size, as particles randomly (with respect to spatial position) enter the 

collection unit. This artifact likely can be eliminated by orienting the laser coaxially with the 

collection needle; however, this was not verified in this work.
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4.3. Influence of Particle Size on LIBS Signal

Before establishing the limit of detection for various elements, it was necessary to explore 

the effect of particle size on the LIBS signal. Figure 7 shows the P/B ratio of Na as a 

function of particle mass over the range 0.15–40 ng at different particle diameters. The Na 

particle mass was varied through a combination of particle diameters (in the range 40–400 

nm) and collection times (15 s to 5 min) to obtain data that spanned the entire mass range. 

Figure 7 shows that all data points fall on a single curve suggesting that the P/B ratio is 

proportional to the particle mass irrespective of the particle size. A power law fit to the data 

(with an R2 of 0.98) is shown in Figure 7 that adequately describes the response at low as 

well high mass loadings.

The data imply that the LIBS response is independent of particle size or the microstructural 

characteristics of the deposit on the collection needle within the particle size range studied in 

this work. This means that the signal is proportional to the total particulate mass deposited, 

irrespective of how finely or coarsely the mass is divided. This ensures that the calibration 

curves generated using monodisperse particles (described in the next section) are therefore 

applicable to analysis of any polydisperse aerosol in the submicrometer size range.

4.4. System Calibration

We calibrated the system for various elements; typical LIBS spectra for Cd, Cr, Cu, Mn, Na, 

and Ti are shown in Figure 8.

For each element, the calibration curve was constructed by plotting the P/B ratio as a 

function of mass deposited on the collection needle tip. Mass was estimated from the 

number of particles deposited on the tip, collection time, flow rate, and chemical 

composition. The limit of detection (LOD) was estimated using 3σ criteria defined by the 

International Union of Pure and Applied Chemistry (IUPAC; Boumans 1994) as

[4]

where σ is the standard deviation of the blank at the spectral region for each element and S is 

the sensitivity given by the slope of the calibration curve. Representative calibration curves 

for Cr, Cd, Mn, and Ti are shown in Figure 9. As shown in Figure 9, calibration curves in 

this study were linear over a mass range spanning at least one order of magnitude within the 

mass loading range studied. For some elements, there could be nonlinear effects at higher 

mass loadings as were seen for Na in Figure 7.

Following curve-of-growth model and experimental observations, atomic emission intensity 

first increases linearly with the atomic concentration in the plasma volume and then reaches 

a plateau due to line-width broadening and self-absorption (Gornushkin et al. 1999; Panne et 

al. 2001; Meissner et al. 2004). This nonlinear relationship between atomic concentration 

and LIBS signal intensity is more pronounced for resonance lines such as Na I line used in 

this study. The effect of line width broadening and self-absorption on linearity of the 

calibration curve is minimized by using a peak integration approach for quantification of 

LIBS signal, as has been done in this study. Additionally, in our setup, signal saturation can 
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be readily avoided by decreasing the accumulated mass on the collection needle as needed. 

In fact, for many real-world measurement applications, it is desirable to have the lowest 

possible collection time to allow high time resolution measurements. However, when 

performing simultaneous multielement measurements, it is important to ensure that when 

using a single-sample collection time, measurement of all the analytes can be performed by 

using the portion of their respective calibration curve before the onset of self-absorption. For 

the mass loadings used in this work, the onset of self-absorption was observed only for Na.

The reliability of the calibration procedure used in this work depends on the accuracy and 

precision of estimation of deposited mass on the tip of the collection needle. As noted 

earlier, the deposited mass, in the calibration experiments, was calculated based on the 

following assumptions: (i) spherical particle shape, (ii) mobility diameter, instead of 

particle's physical size, can be used to calculate mass, and (iii) the particles were devoid of 

any moisture. Implications of these assumptions, with respect to the error introduced in the 

calibration, are discussed below.

Departure of particle shape from sphericity, as characterized by dynamic shape factor, can 

introduce errors using the above approach. Dynamic shape factor (χ), i.e., the ratio of 

friction or viscous drag on the nonspherical particle to that on the spherical particle of the 

same volume, is 1 for spherical particles and > 1 for most nonspherical particles. For a 

nonspherical particle with χ > 1, calculating its mass using its mobility diameter and a 

spherical shape leads to an overestimation of mass. To probe the extent of this error, we 

calculated percent mass overestimation at different dynamic shape factors of nonspherical 

particles and these are listed in Table 5.

These calculations are based on interrelationships between a particle's volume-equivalent 

and mobility diameters, and its material density and shape factor (Kulkarni et al. 2011). The 

overestimation of mass can range from approximately 33% at a modest departure from 

sphericity at χ = 1.1, to a factor of 2.37 at nonspherical shapes with χ = 1.5. NaCl particles 

have been shown to have dynamic shape factors ranging from 1.02 to 1.24, depending upon 

the moisture content, drying rate, and the measurement technique used (Wang et al. 2010). 

Dynamic shape factors for other particles used in this work are not available. Moisture 

content of the particle can also introduce errors in mass estimation. Particle mass was 

calculated assuming bulk material density of the salt in its pure chemical form; any presence 

of moisture in the particle will further lead to overestimation of particle mass (i.e., a specific 

gravity of the material greater than 1, which was the case for all particles in this study). In 

our experimental system, we exercised maximum care to desolvate the particles using two 

successive diffusion dryers and by frequently replenishing the desiccant. However, reduced 

drying performance, leading to finite moisture content, cannot be completely ruled out, 

particularly as the desiccant becomes increasingly saturated. This may further contribute 

toward mass overestimation by a few tens of a percent.

Fluctuation in the number concentration of particles downstream of the DMA during 

calibration can also introduce uncertainty in mass estimation. The pneumatic atomizer used 

in this work was a stable source of calibration aerosol with fluctuation in particle number 

concentration less than 5%.
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Particle wall loss to regions other than the needle tip, if not accounted for, can also introduce 

errors in mass estimation. The capture efficiency curves shown in Figure 4 do account for 

particle loss (mainly deposition due to Brownian diffusion in the size range studied) in the 

absence of electrical field. However, there can be additional mechanisms of loss of 

uncharged (due to induced forces from polarization) as well as charged (due to 

electrophoretic forces) particles in the presence of electrical field. Loss due to polarization 

of uncharged particles was experimentally confirmed to be negligible in our system. 

However, loss of charged particles, if any, could lead to error in mass estimation; however, 

this was not investigated experimentally. Charged particles could deposit in regions other 

than the collection needle tip due to electrical fields around the collection or corona needle 

in the aerosol flow path (Figure 2). We used adequate dielectric sheathing around both the 

needles to concentrate the electrical field on the needle tip to minimize this effect (Figure 2; 

0.4 mm PEEK + 1 mm thick glass wall). Our numerical simulations indicate that the 

electrical field strength falls rapidly with radial distance away from the longitudinal axis of 

both the needles (Figure 3), suggesting that charged particle loss induced by weak electrical 

fields in the aerosol flow path is likely to be negligible. Furthermore, the weak electrical 

fields, if present, can perhaps only capture small particles in the nanometer range (with very 

small mass) due to their high electrical mobility, thereby introducing only a minor error in 

mass estimation. Nevertheless, there can be a finite error associated with capture efficiency 

measurement due to factors mentioned above which can lead to overestimation of mass 

collected on the needle tip.

Multiple charging of particles in the DMA (Figure 1) can also introduce error in mass 

estimation. A DMA classifies particles based on their electrical mobility, implying particle 

size classification only if charge on the particles is known. Particle populations, all of the 

same electrical mobility but of different physical size and charge levels, can pass through the 

DMA. This can introduce an artifact when one must classify particles of the same “physical” 

size. The presence of multiply charged, larger particles in the calibration aerosol can lead to 

underestimation of particle mass in the calibration process. However, this error can be 

greatly minimized by ensuring that the classification size in the DMA is larger than the 

modal diameter of the particle size distribution entering the DMA, as was done in this study. 

Additionally, an impactor was used prior to the DMA to remove particles larger than 1 μm 

aerodynamic diameter to minimize interference from larger particles.

Overestimation of particle mass in the calibration procedure also implies overestimation of 

the LODs, as discussed in the next section. It is worth noting that many sources of errors 

discussed above are inherent in the calibration of most aerosol spectroscopy systems and 

therefore are not specific to our system. In fact, the controlled aerosol collection over a very 

small area on the needle tip in our system enables relatively more accurate and precise 

delivery of analyte mass to the plasma during the calibration process compared to many 

other filter-based systems.

4.5. Limits of Detection

Tables 6 and 7 summarize the LODs in terms of absolute mass as well as air concentration 

for various elements studied in this work. We obtained mass detection limits in the range of 
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0.018–5.03 ng for our system. The collection time ranged from 15 s to 15 min for various 

mass loadings. The mass accumulated on the electrode tip was a linear function of time over 

this time period. The reported LOD values are within a factor of 10 of the lowest measured 

mass in the calibration experiments for most elements (except for Cr), which conforms to 

conventional practice in spectrochemical analysis (Ingley and Crouch 1988). The LODs in 

terms of air concentrations in the range of 0.018–0.67 μg m−3 were obtained by using a 

sample collection time of 5 min and sample flow rate of 1.5 L min−1. Flow rate and 

collection time can be readily increased, and lower detection limits (in terms of air 

concentration) can be achieved. Tables 6 and 7 also report LODs for a laboratory inductively 

coupled plasma-atomic emission spectroscopy (ICP-AES; Spectro Analytical Instruments, 

Inc., Fitchburg, MA, USA) system. The laboratory ICP-AES instrument was equipped with 

a monochromator (180–600 nm) and three polychromators for sequential and simultaneous 

elemental analysis, and used a liquid sample flow rate of 0.001 L min−1 with a total sample 

volume in the ICP plasma of 92.5 μL. As is clearly evident from Tables 6 and 7, detection 

limits of our system are better than or comparable to that of the ICP-AES system for most 

elements, except for Cd. As noted earlier, it is possible that LODs of our system are 

overestimated (i.e., higher than actual) due to assumptions regarding particle shape and 

moisture content of the particles used in the calibration and due to errors associated with 

collection efficiency measurements.

LODs reported by other studies on plasma spectroscopy of aerosols are also listed in Tables 

6 and 7 for comparison. These studies employed variety of methods that varied widely with 

respect to plasma source and characteristics, type of detectors, sample flow rates, and 

sample collection methods. As noted earlier, LIBS studies on aerosols have employed 

various approaches including FSA, conventional SBC followed by LIBS analysis, and 

focused collection of SPB on a substrate using an aerodynamic lens for subsequent LIBS 

analysis. The comparison of LODs in Tables 6 and 7, though complicated by wide 

differences across different methods, serves to bring out the key qualitative features of 

various techniques with respect to their sensitivity and suitability for field-portable 

instrumentation.

LIBS approaches that employ FSA for aerosols typically tend to have low mass detection 

limits (Carranza et al. 2001; Lithgow et al. 2004) due to better coupling of laser energy and 

the absence of background emissions from the substrate. As seen in Table 6, using this 

technique, LODs in the femtogram range can be achieved (Carranza et al. 2001; Lithgow et 

al. 2004) by employing very sensitive ICCD cameras (which have been shown to increase 

the S/N ratio by an order of magnitude; Carranza et al. 2003), gated delay times, and high-

energy lasers. However, FSA limits the size of particles that can be spectroscopically 

detected. For example, an LOD of 3 fg for Ca corresponds to a minimum detectable particle 

size of 130 nm diameter. The technique also suffers from very poor sampling statistics 

(which offsets its key advantage of high time resolution requiring averaging over multiple 

shots) and fixed limit of detection (due to fixed sample flow rate). It is worth noting that the 

detection limits in terms of air concentration (Table 7) for FSA techniques are in fact much 

higher than those for our system due to their poor sampling rate.
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In contrast, substrate-based methods do overcome some of the limitations of FSA 

techniques, albeit at the cost of higher mass detection limits. Table 6 shows that mass 

detection limits for a swipe-based LIBS method (Chinni et al. 2010; a bench-top portable 

unit, aqueous suspensions dried on the swipe followed by LIBS analysis) are 2–5 orders of 

magnitude higher. Mass detection limits of our system are typically much lower than those 

for the swipe-based method. Table 7 also shows lower detection limits of our system 

compared to the filter-based method of Panne et al. (2001, 2002) in spite of lower sampling 

flow rate and inferior detector in our system. Their system utilized a much higher laser pulse 

energy (70 mJ/pulse), a higher flow rate (4 L min−1), and longer collection times (1–32 

min); an Echelle spectrometer, ICCD, and gated delays (Panne et al. 2001, 2002). Other 

substrate methods that use focused collection with an aerodynamic lens could perhaps 

achieve detection limits comparable to our system (Park et al. 2009); however, the method 

requires use of large vacuum pumps, lower sampling flow rates, and only allows analysis of 

a limited particle size range. It is also worth noting that the detection limits of our system are 

an order of magnitude better than those of the microwave-induced plasma spectroscopy 

system of Duan et al. (2000).

4.6. Precision and Accuracy of Measurements

The precision of LIBS measurements depends on many factors such as laser pulse energy, 

stability of laser pulse, detector delay, surface roughness of the substrate, sample 

homogeneity, and number of accumulated spectra (Castle et al. 1998). In addition, as noted 

earlier, other key sources of uncertainty in the calibration process, such as variation in 

particle shape/morphology, particle's moisture content, particle size, and number 

concentration fluctuation, can also be important.

A key source of uncertainty, perhaps ignored by most plasma spectroscopy studies of 

aerosols, is the ability to deliver a known mass of analyte to the plasma volume during the 

calibration process. If the mass ablated in each plasma event is known with high accuracy 

and precision during the calibration process, the overall figures of merit of measurement can 

be substantially improved. However, as noted earlier, accurately delivering known analyte 

mass to the plasma volume is challenging in most substrate-based systems. For instance, 

filter-based methods are calibrated by depositing aerosol of known concentration on the 

filter surface, followed by discrete LIBS sampling of the filter surface. Therefore, it is highly 

desirable that the aerosol deposition be spatially homogenous, not only across the filter 

surface, but also along its depth. This is often not the case in fibrous particulate filters as the 

deposition generally decreases with depth in the direction of the flow. This heterogeneity 

can introduce large errors in the calibration process. The needle collection system used in 

our work largely reduces this uncertainty because the entire mass is concentrated on the 

needle tip and available for complete ablation. This considerably improves the accuracy and 

precision of the calibration and hence that of the measurement in a given application.

In this study, five sets of measurements were performed for each element and the relative 

standard deviation (RSD) of the LIBS signal varied in the range of 1%–21% for all the 

elements for different mass loadings on the collection electrode tip, except for Cd, which 

had higher RSD (see Table 8).
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When the system was operated at higher mass loadings (typically >20 ng), RSDs lower than 

10% were observed. The overall repeatability (except for Cd) of our system was better 

compared to reported values for FSA LIBS techniques that typically have repeatability in the 

range 25%–42% (Cheng 2003; Lithgow et al. 2004; Amodeo et al. 2009).

The low laser pulse energy used in our system could perhaps lead to the poor repeatability 

noted above. Higher pulse energies have been shown to give better repeatability due to more 

stable plasma (Carranza and Hahn 2002). We surmise that using a smaller diameter 

collection needle and orienting the laser beam coaxially with the collection needle could 

further lead to reducing uncertainties. Better control of particle morphology and efficient 

desolvation of aerosols can also substantially reduce the uncertainty of measurements in the 

calibration process.

We also qualitatively probed the measurement accuracy of the system by measuring the 

relative concentration of multiple elements in test aerosols of accurately known elemental 

composition. Stock solutions containing mixtures of elemental standards for Mn, Cr, and Ti 

were prepared with known ratios. These stock solutions were then used to generate the test 

aerosol particles. The measured signals from Mn and Cr were then run through calibration 

curve to obtain the concentrations. The measured concentration ratio thus obtained was then 

compared against the known concentration ratio in the mixture as shown in Figure 10. The 

figure shows an excellent agreement, partially confirming the good measurement accuracy 

of our system.

It should be noted that the presence of other elements in the plasma volume, other than the 

target analyte, can bias the response, known as “matrix effect” (Diwakar et al. 2007, 2010). 

Figure 10 shows the absence of significant matrix effects under the experimental conditions 

used. The good agreement with the measured ratio of elements (Figure 10) also implies that 

the other sources of errors (not related to matrix effects) affecting the accuracy are likely 

negligible. A detailed comparison of analyte concentration measurements, and not just the 

ratios, using an independent analytical method will be necessary to further quantify the 

measurement accuracy of our system.

4.7. Time Resolution of Measurement

The LODs of various elements obtained in this study are low enough to allow near-real-time 

measurement of most elements using the technique proposed in this study. The time 

resolution of measurement for a given application, i.e., the time rate at which the elemental 

concentration of aerosols is obtained, will depend on many factors such as particle size 

distribution, concentration of the element of interest, and its LOD. Table 9 shows minimum 

collection time required for polydisperse aerosols of various inorganic compounds at various 

geometric mean diameters. The total number concentration (Nt) was assumed to be 100 

cm−3 and σg = 1.5 was used in the calculations. The minimum collection time tc was 

calculated as
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[5]

where, LOQi is the limit of quantification, defined as (3.33 × LODi), of ith element; Qa is 

the aerosol sampling flow rate; Φi is the fraction of element i in the inorganic compound 

with material density of ρi. An aerosol flow rate of 5 L min−1 was assumed in the 

calculations.

As shown in the table, measurement of most aerosols with dpg larger than about 50 nm can 

be conducted in few seconds to few minutes (except for Cd, which had a high detection limit 

in our system). For particles below 25 nm diameter, collection time on the order of hours 

may be necessary. It is worth noting that these calculations were performed for very dilute 

aerosols (with a total number concentration of 100 cm−3). Typically, air concentrations of 

particles in most industrial and ambient atmospheres are much larger than 100 cm−3. While 

actual collection times will depend on many factors as noted above and can be substantially 

different from those shown in Table 9, these estimates are conservative enough to expect the 

time resolution in most real-world applications to be on the order of few seconds to minutes 

at moderate flow rates of 1–5 L min−1. These calculations serve to demonstrate the near-

real-time capability of our technique.

5. Conclusions

A new approach for collection of airborne particles on a tip of a microneedle has been 

developed for aerosol chemical analysis using plasma spectroscopy. Our approach allows 

efficient and focused collection of particles over wide size range on the tip of a microneedle 

using the electrostatic technique. As a result, accurate and precise delivery of analyte mass 

to plasma volume can be achieved, thereby allowing reliable calibration. This subsequently 

improves the overall figures of merit of aerosol measurement compared to other plasma 

spectroscopy techniques. Also, the electrostatic collection enables use of high sample flow 

rates with minimal pressure drop, enabling development of compact, field portable 

instruments. We have demonstrated that for elements studied in this work, detection limits 

comparable to that of a laboratory ICP-AES system can be achieved with good accuracy and 

precision. Mass detection limits in the range of 0.018–5 ng could be achieved for the 

elements studied. This corresponds to limits of detection (in terms of air concentration) in 

the range of 18–670 ng m−3 at a modest 1.5 L min−1 sample flow rate and sampling time of 

5 min. These limits of detection were far superior compared to earlier LIBS studies on 

aerosols, particularly considering the high time resolution of our technique. Lower detection 

limits can be further obtained by increasing the flow rate or the sample collection time. Our 

system employed low laser pulse energy, a nonintensified detector, and single delay time for 

all elements to mimic a less complex configuration that is desirable in a field-portable 

spectrometer. The technique is inherently amenable to miniaturization essential in field-

portable instrumentation. The electrode system for aerosol collection can be housed in 

volume as small as a few cubic centimeters. The technique presents a simple and promising 

approach that allows development of compact, near-real-time instrumentation employing 
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various spectroscopic techniques, including laser-induced, microwave-induced, or spark-

induced plasma spectroscopy, and Raman spectroscopy for aerosol measurements.
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Fig. 1. 
Schematic diagram of the experimental setup used in this work.
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Fig. 2. 
Microneedle electrode assembly designed to charge and collect particles for subsequent 

analysis by LIBS (not to scale).
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Fig. 3. 
Distribution of electric potential and electric field strength around the corona and collection 

needle. x- and y-axes show distance in meters. Grayscale contour shows distribution of 

potential (in V) when 5000 V is applied on the corona needle and the collection needle is 

grounded. Electric field streamlines are also shown. The arrows indicate direction of electric 

field, with their length proportional to the strength of the field. Presence of corona was 

neglected in the simulation. (Color figure available online.)
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Fig.4. 
Capture efficiency of collection electrode for various particle diameters in the 

submicrometer size range. Error bars represent ± standard deviation over four different 

measurements.
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Fig. 5. 
LIBS signal for deposited Ti aerosol from the first and second laser shot.
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Fig. 6. 
Schematic diagram showing orientation of the needle with respect to laser beam and shadow 

region.
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Fig. 7. 
Na calibration curve constructed from particle sizes varying from 40 to 400 nm.
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Fig. 8. 
Representative LIBS spectra for Cd, Cr, Cu, Mn, Na, and Ti. Wavelengths of the peaks 

listed in upper left-hand corner are in nanometers.
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Fig. 9. 
Representative calibration curves for Cr, Cd, Mn, and Ti. Cd, Cr, and Mn calibration curves 

were obtained using 50 nm particles. Ti calibration curve was obtained using 50 and 80 nm 

particles. Error bars represent ± standard deviation over five different repeat measurements. 

Slope, y-intercept, and R2 value of a linear fit are also shown for each element. 3σ value for 

Mn, Ti, and Cd are shown as y-intercept in the plot.
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Fig. 10. 
Comparison of known and measured ratios of elements in a test aerosol.
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Table 2
Experimental parameters used in the LIBS system

Laser energy 20 mJ

Wavelength 532 nm

Laser spot size 560 μm

Spectrometer wavelength range 200–980 nm

Delay time 1.3 μs

Integration time 1 ms

Aerosol sample flow rate 1.5 L min−1

Operating voltage for corona 5–5.6 kV

Distance between the needles 7 mm

Corona current 1 μA

Collecting needle tip diameter 500 μm
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Table 3
Selected wavelength and corresponding energy level of elements for LIBS analysis

Element Wavelength (nm) Energy (cm−1)

Cd 508.58 31,826.95–51,483.98

Cu 510.55 11,202.57–30,783.69

Mn 403.07 0–24,802.25

Na 588.99 0–16,973.37

Cr 520.84 593.16–26,787.50

Ti 499.10 742.76–26,772.97
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Table 4
Percentage mass fraction (msh/mai) present in the “shadow region” at different degrees of 

rotation of the collection electrode about the longitudinal axisa

Element % (msh/mai) 90° % (msh/mai) 180° % (msh/mai) 270° Total % (msh/mai)

Cd 1.47 (0.14)* 10.29 (2.58) 2.72 (0.04) 14.49

Cu 1.13 (0.36) 8.96 (1.64) 2.8(1.25) 12.992

Mn 1.28 (0.02) 11.63 (0.65) 1.56 (0.13) 14.482

*
Numbers in the parenthesis indicate standard deviation.

a
The data were acquired using 50 nm particles for each element
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Table 5
Overestimation of particle mass of nonspherical particles resulting from the simplifying 
assumption of spherical shape and mobility-equivalent size

Dynamic shape factor % Mass overestimation

1.1 33.1

1.2 72.8

1.3 119.7

1.4 174.4

1.5 237.5
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Table 8
LODs and associated uncertainties for various elements studied in this work

Element LOD (ng) Range of LOD (ng)* % RSD of LOD

Cd 5.03 3.48–6.19 33

Cr 0.035 0.029–0.039 13

Cu 0.138 0.128–0.158 11

Mn 0.155 0.152–0.17 6

Na 0.018 0.014–0.025 4

Ti 0.44 0.26–0.5 21

*
Range of LOD indicates minimum and maximum of LODs obtained in five individual sets of measurements.
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